Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Case Studies in Chemical and Environmental Engineering ; 2023.
Article in English | EuropePMC | ID: covidwho-2281025

ABSTRACT

Life cycle assessment and machine learning were combined to find the best option for Tehran's waste management for future pandemics. The ReCipe results showed the waste's destructive effects after COVID-19 were greater than before due to waste composition changes. Plastic waste has changed from 7.5 to 11%. Environmental burdens of scenarios were Sc-1 (increase composting to 50%) > Sc-3 > Sc-4 > Sc-b2 > Sc-5 > Sc-2 (increase recycling from 9 to 20%). The artificial neural network and gradient-boosted regression tree could predict environmental impacts with high R2. Based on the results, the environmental burdens of solid waste after COVID-19 should be investigated. Graphical abstract Image 1

2.
IEEE Transactions on Intelligent Transportation Systems ; 23(7):9404-9413, 2022.
Article in English | ProQuest Central | ID: covidwho-1932147

ABSTRACT

Autonomous unmanned aerial vehicles (UAVs) are essential for detecting and tracking specific events, such as automatic navigation. The intelligent monitoring of people’s social distances in crowds is one of the most significant events caused by the coronavirus. The virus is spreading more quickly among the crowds, and the disease cycle continues in congested areas. Due to the error that occurs when humans monitor their activity, an automated model is required to alert to social distance violations in crowds. As a result, this article proposes a two-step framework based on autonomous UAV videos, including human tracking and deep learning-based recognition of the crowd’s social distance. The deep architecture is a modified-fast and lightweight ShuffleNet learning structure. First, the Kalman filter is used to determine the positions of individuals, and then the modified ShuffleNet is used to refine the bounding boxes obtained and determine the social distance. The social distance is calculated using the initial refinement of the bounding box obtained during the tracking step and the scale in frames of the human body. The observed average accuracy, average processing time (APT), and processed frame per second (FPS) for three congestion datasets were 97.5%, 84 milliseconds, and 11.5 FPS, respectively. Real-time decision-making was achieved by reducing the size and resolution of the frames. Additionally, the frames were re-labeled to reduce the computational complexity associated with detecting social distancing. The experimental results demonstrated that the proposed method could operate more quickly and accurately on various resolution frames of UAV videos with difficult conditions.

3.
Environ Sci Pollut Res Int ; 28(32): 43792-43802, 2021 Aug.
Article in English | MEDLINE | ID: covidwho-1173973

ABSTRACT

The novel SARS-CoV-2 outbreak was declared as pandemic by the World Health Organization (WHO) on March 11, 2020. Understanding the airborne route of SARS-CoV-2 transmission is essential for infection prevention and control. In this study, a total of 107 indoor air samples (45 SARS-CoV-2, 62 bacteria, and fungi) were collected from different wards of the Hajar Hospital in Shahrekord, Iran. Simultaneously, bacterial and fungal samples were also collected from the ambient air of hospital yard. Overall, 6 positive air samples were detected in the infectious 1 and infectious 2 wards, intensive care unit (ICU), computed tomography (CT) scan, respiratory patients' clinic, and personal protective equipment (PPE) room. Also, airborne bacteria and fungi were simultaneously detected in the various wards of the hospital with concentrations ranging from 14 to 106 CFU m-3 and 18 to 141 CFU m-3, respectively. The highest mean concentrations of bacteria and fungi were observed in respiratory patients' clinics and ICU wards, respectively. Significant correlation (p < 0.05) was found between airborne bacterial concentration and the presence of SARS-CoV-2, while no significant correlation was found between fungi concentration and the virus presence. This study provided an additional evidence about the presence of SARS-CoV-2 in the indoor air of a hospital that admitted COVID-19 patients. Moreover, it was revealed that the monitoring of microbial quality of indoor air in such hospitals is very important, especially during the COVID-19 pandemic, for controlling the nosocomial infections.


Subject(s)
Air Pollution, Indoor , COVID-19 , Air Microbiology , Bacteria , Fungi , Hospitals , Humans , Iran , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL